
NAG C Library Function Document

nag_pde_parab_1d_euler_exact (d03pxc)

1 Purpose

nag_pde_parab_1d_euler_exact (d03pxc) calculates a numerical flux function using an Exact Riemann
Solver for the Euler equations in conservative form. It is designed primarily for use with the upwind
discretization schemes nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_cd_ode (d03plc) or
nag_pde_parab_1d_cd_ode_remesh (d03psc), but may also be applicable to other conservative upwind
schemes requiring numerical flux functions.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_euler_exact (const double uleft[], const double uright[],
double gamma, double tol, Integer niter, double flux[], Nag_D03_Save *saved,
NagError *fail)

3 Description

nag_pde_parab_1d_euler_exact (d03pxc) calculates a numerical flux function at a single spatial point using
an Exact Riemann Solver (see Toro (1996) and Toro (1989)) for the Euler equations (for a perfect gas) in
conservative form. You must supply the left and right solution values at the point where the numerical
flux is required, i.e., the initial left and right states of the Riemann problem defined below. In
nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_cd_ode (d03plc) and
nag_pde_parab_1d_cd_ode_remesh (d03psc), the left and right solution values are derived automatically
from the solution values at adjacent spatial points and supplied to the function argument numflx from
which you may call nag_pde_parab_1d_euler_exact (d03pxc).

The Euler equations for a perfect gas in conservative form are:

@U

@t
þ @F

@x
¼ 0, ð1Þ

with

U ¼
�
m
e

2
4

3
5 and F ¼

m
m2

� þ � � 1ð Þ e� m2

2�

� �
me
� þ m

� � � 1ð Þ e� m2

2�

� �
2
64

3
75, ð2Þ

where � is the density, m is the momentum, e is the specific total energy and � is the (constant) ratio of
specific heats. The pressure p is given by

p ¼ � � 1ð Þ e� �u2
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where u ¼ m=� is the velocity.

The function calculates the numerical flux function F UL;URð Þ ¼ F U � UL;URð Þð Þ, where U ¼ UL and
U ¼ UR are the left and right solution values, and U � UL;URð Þ is the intermediate state ! 0ð Þ arising from
the similarity solution U y; tð Þ ¼ ! y=tð Þ of the Riemann problem defined by
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¼ 0, ð4Þ

with U and F as in (2), and initial piecewise constant values U ¼ UL for y < 0 and U ¼ UR for y > 0.
The spatial domain is �1 < y < 1, where y ¼ 0 is the point at which the numerical flux is required.
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The algorithm is termed an Exact Riemann Solver although it does in fact calculate an approximate
solution to a true Riemann problem, as opposed to an Approximate Riemann Solver which involves some
form of alternative modelling of the Riemann problem. The approximation part of the Exact Riemann
Solver is a Newton–Raphson iterative procedure to calculate the pressure, and you must supply a tolerance
tol and a maximum number of iterations niter. Default values for these arguments can be chosen.

A solution cannot be found by this function if there is a vacuum state in the Riemann problem (loosely
characterised by zero density), or if such a state is generated by the interaction of two non-vacuum data
states. In this case a Riemann solver which can handle vacuum states has to be used (see Toro (1996)).

4 References

Toro E F (1989) A weighted average flux method for hyperbolic conservation laws Proc. Roy. Soc. Lond.
A423 401–418

Toro E F (1996) Riemann Solvers and Upwind Methods for Fluid Dynamics Springer–Verlag

5 Arguments

1: uleft½3� – const double Input

On entry: uleft½i� 1� must contain the left value of the component Ui, for i ¼ 1; 2; 3. That is,
uleft½0� must contain the left value of �, uleft½1� must contain the left value of m and uleft½2� must
contain the left value of e.

2: uright½3� – const double Input

On entry: uright½i� 1� must contain the right value of the component Ui, for i ¼ 1; 2; 3. That is,
uright½0� must contain the right value of �, uright½1� must contain the right value of m and
uright½2� must contain the right value of e.

3: gamma – double Input

On entry: the ratio of specific heats, �.

Constraint: gamma > 0:0.

4: tol – double Input

On entry: the tolerance to be used in the Newton–Raphson procedure to calculate the pressure. If

tol is set to zero then the default value of 1:0� 10�6 is used.

Constraint: tol � 0:0.

5: niter – Integer Input

On entry: the maximum number of Newton–Raphson iterations allowed. If niter is set to zero then
the default value of 20 is used.

Constraint: niter � 0.

6: flux½3� – double Output

On exit: flux½i� 1� contains the numerical flux component F̂i, for i ¼ 1; 2; 3.

7: saved – Nag_D03_Save * Communication Structure

Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved may contain data concerning the computation required by nag_pde_parab_1d_euler_exact
(d03pxc) as passed through to numflx from one of the integrator functions nag_pde_parab_1d_cd
(d03pfc), nag_pde_parab_1d_cd_ode (d03plc) or nag_pde_parab_1d_cd_ode_remesh (d03psc). You
should not change the components of saved.
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8: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, niter ¼ valueh i.
Constraint: niter � 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_ITER_FAIL_CONV

Newton–Raphson iteration failed to converge.

NE_REAL

Left pressure value pl < 0:0: pl ¼ valueh i.
On entry, gamma ¼ valueh i.
Constraint: gamma > 0:0.

On entry, tol ¼ valueh i.
Constraint: tol � 0:0.

On entry, uleft½0� < 0:0: uleft½0� ¼ valueh i.
On entry, uright½0� < 0:0: uright½0� ¼ valueh i.
Right pressure value pr < 0:0: pr ¼ valueh i.

NE_VACUUM

A vacuum condition has been detected.

7 Accuracy

The algorithm is exact apart from the calculation of the pressure which uses a Newton–Raphson iterative
procedure, the accuracy of which is controlled by the argument tol. In some cases the initial guess for the
Newton–Raphson procedure is exact and no further iterations are required.

8 Further Comments

nag_pde_parab_1d_euler_exact (d03pxc) must only be used to calculate the numerical flux for the Euler
equations in exactly the form given by (2), with uleft½i� 1� and uright½i� 1� containing the left and right
values of �;m and e, for i ¼ 1; 2; 3, respectively.

For some problems the function may fail or be highly inefficient in comparison with an Approximate
Riemann Solver (e.g., nag_pde_parab_1d_euler_roe (d03puc), nag_pde_parab_1d_euler_osher (d03pvc) or
nag_pde_parab_1d_euler_hll (d03pwc)). Hence it is advisable to try more than one Riemann solver and to
compare the performance and the results.

The time taken by the function is independent of all input arguments other than tol.
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9 Example

This example uses nag_pde_parab_1d_cd_ode (d03plc) and nag_pde_parab_1d_euler_exact (d03pxc) to
solve the Euler equations in the domain 0 � x � 1 for 0 < t � 0:035 with initial conditions for the
primitive variables � x; tð Þ, u x; tð Þ and p x; tð Þ given by

� x; 0ð Þ ¼ 5:99924, u x; 0ð Þ ¼ 19:5975, p x; 0ð Þ ¼ 460:894, for x < 0:5,
� x; 0ð Þ ¼ 5:99242, u x; 0ð Þ ¼ �6:19633, p x; 0ð Þ ¼ 46:095, for x > 0:5.

This test problem is taken from Toro (1996) and its solution represents the collision of two strong shocks
travelling in opposite directions, consisting of a left facing shock (travelling slowly to the right), a right
travelling contact discontinuity and a right travelling shock wave. There is an exact solution to this
problem (see Toro (1996)) but the calculation is lengthy and has therefore been omitted.

9.1 Program Text

/* nag_pde_parab_1d_euler_exact (d03pxc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>
#include <math.h>

/* Structure to communicate with user-supplied function arguments */

struct user
{

double elo, ero, rlo, rro, ulo, uro, gamma;
};
static void bndary(Integer, Integer, double, const double[],

const double[], Integer, const double[],
const double[], Integer, double[], Integer *,
Nag_Comm *);

static void numflx(Integer, double, double, Integer, const double[],
const double[], const double[], double[], Integer *,
Nag_Comm *, Nag_D03_Save *);

#define U(I,J) u[npde*((J)-1)+(I)-1]
#define UE(I,J) ue[npde*((J)-1)+(I)-1]

int main(void)
{

const Integer npde=3, npts=141, ncode=0, nxi=0, neqn=npde*npts+ncode,
lisave=neqn+24, intpts=9, nwkres=npde*(2*npts+3*npde+32)+7*npts+4,
lenode=9*neqn+50, mlu=3*npde-1, lrsave=(3*mlu+1)*neqn+nwkres+lenode;

double d, p, tout, ts, v;
Integer exit_status, i, ind, itask, itol, itrace, k;
double *algopt=0, *atol=0, *rtol=0, *u=0,

*ue=0, *rsave=0, *x=0, *xi=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;
struct user data;

/* Allocate memory */

if ( !(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
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!(ue = NAG_ALLOC(npde*intpts, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xi = NAG_ALLOC(1, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)) )

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

INIT_FAIL(fail);
exit_status = 0;

Vprintf("nag_pde_parab_1d_euler_exact (d03pxc) Example Program Results\n");

/* Skip heading in data file */

Vscanf("%*[^\n] ");

/* Problem parameters */

data.gamma = 1.4;
data.rlo = 5.99924;
data.rro = 5.99242;
data.ulo = 5.99924*19.5975;
data.uro = -5.99242*6.19633;
data.elo = 460.894/(data.gamma-1.0) + 0.5*data.rlo*19.5975*19.5975;
data.ero = 46.095 /(data.gamma-1.0) + 0.5*data.rro*6.19633*6.19633;
comm.p = (Pointer)

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

/* Initial values */

for (i = 1; i <= npts; ++i)
{

if (x[i-1] < 0.5)
{

U(1, i) = data.rlo;
U(2, i) = data.ulo;
U(3, i) = data.elo;

} else if (x[i-1] == 0.5) {
U(1, i) = 0.5*(data.rlo + data.rro);
U(2, i) = 0.5*(data.ulo + data.uro);
U(3, i) = 0.5*(data.elo + data.ero);

} else {
U(1, i) = data.rro;
U(2, i) = data.uro;
U(3, i) = data.ero;

}
}

itrace = 0;
itol = 1;
atol[0] = 0.005;
rtol[0] = 5e-4;
xi[0] = 0.0;
ind = 0;
itask = 1;
for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* Theta integration */

algopt[0] = 2.0;
algopt[5] = 2.0;
algopt[6] = 2.0;
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/* Max. time step */

algopt[12] = 0.005;

ts = 0.0;
tout = 0.035;

/* nag_pde_parab_1d_cd_ode (d03plc).
* General system of convection-diffusion PDEs with source
* terms in conservative form, coupled DAEs, method of
* lines, upwind scheme using numerical flux function based
* on Riemann solver, one space variable
*/

nag_pde_parab_1d_cd_ode(npde, &ts, tout, d03plp, numflx, bndary, u, npts, x,
ncode, d03pek, nxi, xi, neqn, rtol, atol, itol,
Nag_TwoNorm, Nag_LinAlgBand, algopt, rsave, lrsave,
isave, lisave, itask, itrace, 0, &ind, &comm, &saved,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_cd_ode (d03plc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf(" t = %6.3f\n\n", ts);
Vprintf(" x APPROX d EXACT d APPROX v EXACT v");
Vprintf(" APPROX p EXACT p\n");

/* Read exact data at output points */

for (i = 1; i <= intpts; ++i)
{

Vscanf("%lf", &UE(1,i));
Vscanf("%lf", &UE(2,i));
Vscanf("%lf", &UE(3,i));

}

/* Calculate density, velocity and pressure */

k = 0;
for (i = 15; i <= 127; i += 14)

{
++k;
d = U(1, i);
v = U(2, i)/d;
p = d*(data.gamma-1.0)*(U(3, i)/d - 0.5*v*v);
Vprintf(" %8.2e", x[i-1]);
Vprintf(" %10.4e", d);
Vprintf(" %10.4e", UE(1,k));
Vprintf(" %10.4e", v);
Vprintf(" %10.4e", UE(2,k));
Vprintf(" %10.4e", p);
Vprintf(" %10.4e\n", UE(3,k));

}

Vprintf("\n");
Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:

if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);
if (ue) NAG_FREE(ue);
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if (rsave) NAG_FREE(rsave);
if (x) NAG_FREE(x);
if (xi) NAG_FREE(xi);
if (isave) NAG_FREE(isave);

return exit_status;
}
static void bndary(Integer npde, Integer npts, double t, const double x[],

const double u[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[],
Integer *ires, Nag_Comm *comm)

{
struct user *data = (struct user *)comm->p;

if (ibnd == 0)
{

g[0] = U(1, 1) - data->rlo;
g[1] = U(2, 1) - data->ulo;
g[2] = U(3, 1) - data->elo;

} else {
g[0] = U(1, npts) - data->rro;
g[1] = U(2, npts) - data->uro;
g[2] = U(3, npts) - data->ero;

}
return;

}
static void numflx(Integer npde, double t, double x, Integer ncode,

const double v[], const double uleft[],
const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

{
struct user *data = (struct user *)comm->p;
NagError fail;
Integer niter = 0;
double tol = 0.0;

INIT_FAIL(fail);

/* nag_pde_parab_1d_euler_exact (d03pxc).
* Exact Riemann Solver for Euler equations in conservative
* form, for use with nag_pde_parab_1d_cd (d03pfc),
* nag_pde_parab_1d_cd_ode (d03plc) and
* nag_pde_parab_1d_cd_ode_remesh (d03psc)
*/

nag_pde_parab_1d_euler_exact(uleft, uright, data->gamma, tol, niter, flux,
saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_euler_exact (d03pxc).\n%s\n",
fail.message);

}

return;
}

9.2 Program Data

nag_pde_parab_1d_euler_exact (d03pxc) Example Program Data
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.3104E+02 0.8690E+01 0.1692E+04
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9.3 Program Results

nag_pde_parab_1d_euler_exact (d03pxc) Example Program Results
t = 0.035

x APPROX d EXACT d APPROX v EXACT v APPROX p EXACT p
1.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
2.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
3.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
4.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
5.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
6.00e-01 1.4227e+01 1.4280e+01 8.6600e+00 8.6900e+00 1.6878e+03 1.6920e+03
7.00e-01 1.4246e+01 1.4280e+01 8.6720e+00 8.6900e+00 1.6884e+03 1.6920e+03
8.00e-01 1.9214e+01 1.4280e+01 8.6742e+00 8.6900e+00 1.6892e+03 1.6920e+03
9.00e-01 3.0997e+01 3.1040e+01 8.6747e+00 8.6900e+00 1.6875e+03 1.6920e+03

Number of integration steps in time = 697
Number of function evaluations = 1708
Number of Jacobian evaluations = 1
Number of iterations = 2
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